---------- Forwarded message ----------
From:
George Apostolopoulos <ggapostolopoulos@gmail.com> Date: 2010/1/21
Subject:
To:
ggapostolopoulosmediame@blogger.com Through their behavior, some students are telling us that they feel neither the need nor the desire to pay close attention to the instructor during some classes. Generally speaking, this is nothing new.
Devices and Distraction in College Classrooms
Laptops and other mobile devices have great potential to enhance and transform instruction and are being used effectively in many college classrooms.5 Today's students use their devices in class to take notes, access materials and applications, and find relevant information. When all students in a classroom can access networked tools simultaneously, many collaborative learning and just-in-time teaching opportunities emerge.
There is a dark side to the presence of personal, networked devices in class, however—when students use them to engage in activities unrelated to coursework.
Students have always found ways, other than listening to the instructor, to pass the time during class. Crossword puzzles, doodling, and daydreams have occupied students' minds during more classes than we care to admit. At first glance, it appears that the wireless laptop, PDA, iPod, and cellular phone are simply the crossword puzzles of today's college classrooms. As suggested by the comments below, however, the issue is more complex. Yesterday's students did not have 24 Χ 7 online access to all of the content presented during a typical lecture-based class, did not find the crossword puzzle being tackled by the student sitting next to them particularly distracting, and were not themselves as tempted by a crossword puzzle as by instant messaging or an immersive online game. In addition, a handful of students in a large lecture hall working on crossword puzzles did not change the physical environment for instructors:
When a teacher is up there reading his slides and I can go home and look at them later, Solitaire can be a temptation—let alone my e-mail messages that I'm checking. It's kind of a blunt truth, but sitting in the back of the classroom, it's not just me. You look around and all you see is Solitaire, e-mail.6
The computers interfere with making eye contact. You've got this picket fence between you and the students.7
In addition to the sensory richness of Web sites and online games, today's mobile devices convey social information, one of the most powerful targets of attention. We seem particularly attuned to this information, whether studying people's faces and body movements or listening to people talk. In addition, the software applications used to mediate communication are designed to grab the user's attention. Microsoft MSN Messenger, a popular instant messaging client, provides a visible and audible signal when a member of your buddy list starts the application and when a message is received. It has a "nudge" feature that presents a distinctive sound and animation when you want to attract the attention of a buddy, shaking the messaging window back and forth on the buddy's screen. It has a "wink" feature that allows you to send animations to a buddy, such as the large set of knuckles illustrated in Figure 1 that appear to rap on the inside of your buddy's screen. Even if students make every effort to pay attention to the instructor, instant messaging applications are designed to capture their attention, and the social information conveyed is probably too alluring for most students to ignore.
To better understand the potential of today's mobile devices to distract students, it may be helpful to review some of the basic principles of attention.8 Attention is perhaps best represented not as a single process but as an organized set of procedures through which we select specific environmental stimuli or inputs for cognitive processing.9 It is commonly held that only one input is processed consciously. This could be called the attended input. All other environmental stimuli (for example, background noise, the temperature of the room) are processed unconsciously. These are the unattended inputs. Unconscious monitoring detects changes in inputs to which we are not attending consciously, but that might be important. What constitutes an important change is probably determined by another process, referred to here as the attention controller, which may push the information into conscious awareness.10 This might result in the selection of a new attended input, a shift in attention perceived as either controlled and selective or unexpected and distracting.
We have all experienced the sudden conscious awareness of an unattended input. The so-called cocktail party effect11 occurs when you hear your name mentioned somewhere in a crowded room as you engage in a discussion with someone else. Even as you attend to the discussion, presumably you monitor other sounds in the room unconsciously. Your attention controller detects an important stimulus—your name—which causes you to shift your conscious attention away from your discussion.
Using these basic concepts, the distracting nature of mobile devices in the classroom can be recast. Given two potential inputs, the instructor or a laptop screen displaying a game of Solitaire, some students select the instructor as the attended input and the laptop as the unattended input. Those who are trying to listen to their instructor and find their attention captured by their own or another student's laptop screen are distracted by that device. This can be problematic in a classroom environment, as it interferes with students' ability to process course related information and prevents them from obtaining an outcome (specifically, learning) they desire and expect to receive, a common cause of frustration, anger, and aggression.12 This emotional response is probably more pronounced when students are distracted by others' devices over which they have no control. As much as we hope that all students select their instructors as the primary target of their attention during class, we know that some choose the game of Solitaire, relegating the instructor to the status of unattended input. This is often described erroneously as distraction. In fact, these students are not distracted by their devices; they have selected them for attention. If anything, these students may find themselves distracted by the instructor.
This is probably what passes as multitasking for many students. They attend to e-mail, instant messages, and other unrelated, device-based information during class, while monitoring the instructional stream unconsciously. Their attention controllers are set to respond to important signals, such as the phrase, "This will be on the test." In the classroom version of the cocktail party effect, students' attention then snaps to the instructor.
Although the challenge in this case is one of student motivation, not distraction, the two are closely related. As more students decide to instant message or play online games during class, the volume and variety of potentially distracting environmental information increases, making it more difficult for motivated learners to attend to the instructor. What impact does this have on classroom design?
First and foremost, instructors must be able to engage students in the learning process during class time, and classrooms must be designed to facilitate that engagement. It is difficult for students to attend to other activities when they are talking to an instructor, working on a group activity, or using their devices for academic purposes. Instead of banning instant messaging in class, instructors might be supported in their use of this and other social technologies to facilitate class-related discussion and collaborative work.
Attempting to prohibit the use of devices in class through edict or infrastructure (for example, installing an Internet kill switch) is costly and does little to address the underlying problem. It is preferable to design classrooms and classroom computing policies that allow instructors to exercise greater social control.
In the case of laptops in the classroom, screens should be easily visible to instructors as they walk around the room, and instructors should be able to display any student's laptop screen to a public screen at a moment's notice. In large classes, software that allows instructors to view thumbnail images of each student's screen (for example, DyKnow Monitor or SMART SynchronEyes) may also be useful. Although most instructors are probably not interested in spending time on what feels like student surveillance, the mere presence of these methods combined with clear classroom policies offers a good classroom management solution that lets students continue using their devices for academic purposes.
Through their behavior, some students are telling us that they feel neither the need nor the desire to pay close attention to the instructor during some classes. Generally speaking, this is nothing new.
However, those responsible for designing learning spaces should be aware that today's incarnation of this problem requires additional study. Today's devices are colliding with yesterday's methods. What takes place in a college classroom is changing, due in large part to the very information technology that gives some instructors and administrators cause for concern. The classroom is no longer a place where information is delivered to passive students. A growing number of students get that information elsewhere and do not expect to hear it repeated verbatim in class. Instead, the classroom is becoming an interactive, collaborative environment where knowledge is created actively by students, many of whom have devices that are as much a part of them as their own skin and that can be a very important part of this process.
Collaboration in the Classroom
Although planning for data projection and network access is an important part of today's classroom design process, information technology is likely to have an even greater indirect effect on how fixed-site classrooms are used in the future. The migration to the Web of the content traditionally delivered by instructors in lecture format is helping shift the function served by brick-and-mortar classrooms from information delivery to collaboration and discussion. Collaborative learning refers to a wide variety of "educational activities in which human relationships are the key to welfare, achievement, and mastery," wherein faculty "help students learn by working together on substantive issues."13 Surveys indicate that lecture is still the most common instructional method used educators in the United States.14
Nonetheless, the transition from lecture to collaboration is well under way.
What impact does this have on classroom design? This fundamental change will challenge designers to create environments that facilitate collaborative activities. Instead of theaters where students watch instructors perform, classrooms must be flexible meeting places. Bruffee15 described the ideal classroom for collaborative learning:
A level floor, movable seats, chalkboards on three or four walls, controlled acoustics (acoustical-tiled ceilings and carpeted floors), and no central seminar table (or one that can be pushed well out of the way without threatening an attack of lumbago). An alternative is six to ten movable four- or five-sided tables of roughly card-table size. This description implies a maximum class size of 50 students. The question of classroom density is an important one: Researchers have explored the psychological and educational effects of classroom density, both spatial (the size of the room) and social (the number of students). In their meta-analysis of 77 different studies on this issue, Glass and Smith16 concluded that higher social density results in lower student achievement. When designing collaborative classrooms, a good social density benchmark is three to five groups of 6 to 12 students each. Spatial density should be such that both students and instructors have enough room to move easily from group to group (specifically, 4 to 7 feet between groups). Designers should also pay careful attention to the degree to which students feel crowded in a classroom. The experience of crowding in educational settings appears related to personal space violation.17 Research suggests that groups of students can be expected to work together most effectively at personal distances of 2 to 4 feet without feeling crowded.
Although class size is a limiting factor when implementing certain collaborative learning activities comfortably, small group collaboration and discussion are easier to manage in large classes than many instructors realize.
Informal small group techniques like think-pair-share,18 wherein students think briefly about a question posed by the instructor, discuss their thoughts with a student sitting next to them, and then share their joint thoughts with the class, are feasible in large classes19 and can be facilitated by technology.
More formal activities such as jigsaw groups and structured controversy can also engage students in large classes.20
Classroom response systems or "clickers" are used by a growing number of instructors to gather student feedback and stimulate in-class discussion.
In classes that allow group network access, a wide variety of groupware tools can support collaboration in groups of all sizes.
DyKnow Vision allows students to view and annotate instructor whiteboard activity in real time. Instructors can then invite students to the virtual whiteboard, displaying their work to the entire class.
GroupSystems is a suite of tools for supporting idea generation, organization, and evaluation in face-to-face and distributed groups.
…………………..
College Classrooms of Mystery and Enchantment
As students enter a virtual or brick-and-mortar learning environment, they form a cognitive impression of that space and experience an associated emotional response, just as Harry Potter did when he entered his Divination classroom.
People's preference for specific environments appears to depend on their cognitive impression. Kaplan and Kaplan22 suggested four cognitive determinants of environmental preference:
Coherence, or the ease with which a setting can be organized cognitively
Complexity, or the perceived capacity of the setting to occupy interest and stimulate activity
Legibility, or perceived ease of use
Mystery, or the perception that entering the setting would lead to increased learning, interaction, or interest
An interesting addition to this list might be the concept of enchantment.
Bennett23 described enchantment as the experience of being "both caught up and carried away." When enchanted by what we are experiencing, we are held spellbound, our senses seem heightened,24 and we are caught in a moment of pure presence that we try to maintain.25--
============================
George Apostolopoulos
++30 6945 809527